Тип в езика
    Служи за комуникация между go рутини
    В него може да се четат и пишат стойности от конкретен тип
  
func worker(val string) {
  fmt.Prinln(val)
}
func main() {
    go worker("one")
    go worker("two")
    worker("three")
    time.Sleep(10 * time.Second)
}Не е ясно. Нещата се изпълняват конкурентно.
    Когато главната go рутина завърши.
    Независимо колко други живи има.
  
nil канал? Когато пишеш?
    Четене: блокира за винаги
    Писане: блокира за винаги
  
    Четене: връща нулевата стойност на типа на канала
    Писане: паника
    Затваряне: паника
  
package main
import (
	"fmt"
	"math/rand"
	"time"
)
func main() { boring := func(msg string) { for i := 0; ; i++ { fmt.Println(msg, i) time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond) } } go boring("boring!") fmt.Println("Listening.") time.Sleep(2 * time.Second) fmt.Println("You are way too boring. I am leaving.") }
time.Sleepsync е пакет, който ни дава синхронизационни примитиви от сравнително ниско ниво:
CondMutex и RWMutexOncePoolWaitGroupедин полезен интерфейс:
type Locker interface {
    Lock()
    Unlock()
}
    и подпакет atomic с low-level memory примитиви
  
    Изчаква колекция от горутини да приключат и чак тогава продължава с изпълнението.
    Така не правим простотии със time.Sleep, както преди.
  
type WaitGroup struct {}
func (*WaitGroup) Add(delta int)
func (*WaitGroup) Done()
func (*WaitGroup) Wait()package main
import (
	"fmt"
	"math/rand"
	"sync"
	"time"
)
func main() { var wg sync.WaitGroup boring := func(msg string) { for i := 0; i < 8; i++ { fmt.Println(msg, i) time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond) } wg.Done() } wg.Add(1) go boring("boring!") fmt.Println("Waiting for the boring function to do its work") wg.Wait() }
Стига вече с тая скука!
package main
import (
	"fmt"
	"net/http"
	"sync"
)
func main() { var wg sync.WaitGroup var urls = []string{ "http://www.golang.org/", "http://www.google.com/", "http://does-not-exists-for-real.com/", } for _, url := range urls { wg.Add(1) // Increment the WaitGroup counter. // Launch a goroutine to fetch the URL. go func(url string) { content, err := http.Get(url) // Fetch the URL. if err == nil { fmt.Println(url, content.Status) } else { fmt.Println(url, "has failed") } wg.Done() // Decrement the counter when the goroutine completes. }(url) } // Wait for all HTTP fetches to complete. wg.Wait() }
type Mutex struct {}
func (*Mutex) Lock()
func (*Mutex) Unlock()private атрибут на наш типUnlock() е добра идея да бъде в defersync.Lockerpackage main
import (
	"fmt"
	"sync"
)
func main() { var ( count int countMtx sync.Mutex countWg sync.WaitGroup ) worker := func() { countMtx.Lock() count += 1 countMtx.Unlock() countWg.Done() } for i := 0; i < 8; i++ { countWg.Add(1) go worker() } countWg.Wait() fmt.Println("counter:", count) }
package main
import (
	"fmt"
	"sync"
)
func main() { var ( count int countWg sync.WaitGroup ) ch := make(chan struct{}, 1) worker := func() { ch <- struct{}{} count += 1 <-ch countWg.Done() } for i := 0; i < 8; i++ { countWg.Add(1) go worker() } countWg.Wait() fmt.Println("counter:", count) }
Mutex при ситуации, в които част от горутините само четатtype RWMutex struct {}
func (*RWMutex) Lock()
func (*RWMutex) Unlock()
func (*RWMutex) RLock()
func (*RWMutex) RUnlock()
func (*RWMutex) RLocker() sync.Lockersync.LockerRLock блоква само докато някой използва LockRLocker() връща Locker, който ще използва RLock и RUnlock на оригиналаОбект от този тип ще изпълни точно една функция.
package main
import (
	"fmt"
	"sync"
)
func main() { var once sync.Once var wg sync.WaitGroup onceBody := func() { fmt.Println("Only once") } anotherBody := func() { fmt.Println("Another") } for i := 0; i < 10; i++ { wg.Add(1) go func() { once.Do(onceBody) once.Do(anotherBody) wg.Done() }() } wg.Wait() }
type Cond struct {
    L Locker // this is held while observing or changing the condition
    // other unexported fields ...
}
func NewCond(l Locker) *Cond
func (c *Cond) Wait()
func (c *Cond) Broadcast()
func (c *Cond) Signal()condition-variable или monitor
    Demo ./code/concurrency102/cond.go
  
select {
case v1 := <-c1:
    fmt.Printf("received %v from c1\n", v1)
case v2 := <-c2:
    fmt.Printf("received %v from c2\n", v2)
case c3 <- 5:
    fmt.Println("send 5 to c3")
default:
    fmt.Printf("no one was ready to communicate\n")
}
    Накратко: switch за канали.
    Надълго: изчаква първия case, по който е изпратена или получена стойност
  
defaultdefault блокира и изчакваКакво би направил следния код?
package main
import "fmt"
import "time"
func main() { c := make(chan int) go func() { c <- 42 }() select { case v1 := <-c: fmt.Printf("received %d in v1\n", v1) case v2 := <-c: fmt.Printf("received %d in v2\n", v2) case <-time.After(1 * time.Nanosecond): fmt.Printf("timeout\n") default: fmt.Printf("nothing!\n") } }
Не се знае.
package main
import (
	"fmt"
	"net/http"
	"time"
)
func fetch(url string) <-chan *http.Response { ch := make(chan *http.Response) go func() { if response, err := http.Get(url); err == nil { ch <- response } }() return ch } func main() { select { case resp := <-fetch("https://www.google.com/search?q=golang"): fmt.Printf("received %v from google\n", resp.Status) case resp := <-fetch("https://www.bing.com/search?q=golang"): fmt.Printf("received %v from bing\n", resp.Status) case <-time.After(500 * time.Millisecond): fmt.Printf("timed out\n") } }
 
package main
import (
	"fmt"
)
func f(left, right chan int) { left <- 1 + <-right } func main() { const n = 100000 leftmost := make(chan int) right := leftmost left := leftmost for i := 0; i < n; i++ { right = make(chan int) go f(left, right) left = right } go func(c chan int) { c <- 1 }(right) fmt.Println(<-leftmost) }
package main func fib() <-chan int { c := make(chan int) go func() { for a, b := 0, 1; ; a, b = b, a+b { c <- a } }() return c } func main() { fibonacci := fib() for i := 0; i < 10; i++ { println(<-fibonacci) } }
package main
import (
	"fmt"
	"math/rand"
	"time"
)
func talk(msg string) <-chan string { c := make(chan string) go func() { for i := 0; ; i++ { c <- fmt.Sprintf("%s: %d", msg, i) time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond) } }() return c } func main() { doycho := talk("Doycho") misho := talk("Misho") for i := 0; i < 5; i++ { fmt.Println(<-doycho) fmt.Println(<-misho) } }
 
package main
import (
	"fmt"
	"math/rand"
	"time"
)
// TALK START OMIT
func talk(msg string) <-chan string { // HL
	c := make(chan string)
	r := rand.New(rand.NewSource(time.Now().UnixNano()))
	go func() {
		for i := 0; ; i++ {
			c <- fmt.Sprintf("%s: %d", msg, i)
			time.Sleep(time.Duration(r.Intn(1e3)) * time.Millisecond)
		}
	}()
	return c
}
// TALK END OMIT
// FANIN START OMIT
func fanIn(input1, input2 <-chan string) <-chan string { c := make(chan string) go func() { for { select { case s := <-input1: c <- s case s := <-input2: c <- s } } }() return c } func main() { c := fanIn(talk("Misho"), talk("Doycho")) for i := 0; i < 10; i++ { fmt.Println(<-c) } }
func fanIn(input1, input2 <-chan string, finish chan struct{}) <-chan string { c := make(chan string) go func() { for { select { case s := <-input1: c <- s case s := <-input2: c <- s case <-finish: close(c) wg.Done() return } } }() return c }
package main
import (
	"fmt"
	"math/rand"
	"sync"
	"time"
)
var wg sync.WaitGroup
// TALK START OMIT
func talk(msg string) <-chan string { // HL
	c := make(chan string)
	r := rand.New(rand.NewSource(time.Now().UnixNano()))
	go func() {
		for i := 0; ; i++ {
			c <- fmt.Sprintf("%s: %d", msg, i)
			time.Sleep(time.Duration(r.Intn(1e3)) * time.Millisecond)
		}
	}()
	return c
}
// TALK END OMIT
// FANIN START OMIT
func fanIn(input1, input2 <-chan string, finish chan struct{}) <-chan string { // HL
	c := make(chan string)
	go func() {
		for {
			select {
			case s := <-input1:
				c <- s
			case s := <-input2:
				c <- s
			case <-finish: // HL
				close(c) // HL
				wg.Done()
				return
			}
		}
	}()
	return c
}
// FANIN END OMIT
func main() { wg.Add(1) finish := make(chan struct{}) c := fanIn(talk("Doycho"), talk("Misho"), finish) for value := range c { fmt.Println(value) if len(value) > 9 { close(finish) } } wg.Wait() }
Тестове и обработване на грешки
